$C_{15}H_6N_4O_9S_4.CH_3NO_2$

Data collection		S1—C2 S3—C2	1.749 (4) 1.767 (4)	N1'—01'	1.220 (6)
Nicolet R3m/E diffractom- eter	$R_{\rm int} = 0.0150$ $\theta_{\rm max} = 25.0^{\circ}$	C1—S1—C2 C2—S3—C10	96.9 (2) 101.6 (2)	C1—S2—C3 C3—S4—C4	96.5 (2) 101.2 (2)
$\omega/2\theta$ scans	$h = 0 \rightarrow 11$	S1—C1—S2	112.1 (2)	S1C109	123.9 (3)
Absorption correction:	$k = -12 \rightarrow 12$	S2C1O9	124.0 (3)	S1—C2—S3	118.2 (2)
none	$l = -18 \rightarrow 18$	S1C2C3	116.8 (3)	S3—C2—C3	124.7 (3)
1226 manurad reflections	2 standard reflections	S2—C3—S4	117.4 (2)	S2C3C2	117.8 (3)
4550 measured renections	2 standard reflections	S4C3C2	124.6 (3)	S4C4C5	120.9 (3)
4246 independent reflections	monitored every 100	S4C4C9	122.4 (3)	S3C10C11	122.1 (3)
3397 observed reflections	reflections	S3C10C15	120.6 (2)	C1'-N1'-O1'	117.7 (4)
$[F > 3\sigma(F)]$	intensity decay: <5%	C1'—N1'—O2'	118.7 (5)	01'—N1'—O2'	123.7 (5)

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.032$
R = 0.0466	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0466	Δho_{\min} = -0.29 e Å ⁻³
S = 0.973	Extinction correction: none
3397 reflections	Atomic scattering factors
325 parameters	from International Tables
H-atom parameters not	for X-ray Crystallography
refined	(1974, Vol. IV)
$w = 1/\sigma^2(F)$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	У	Z	U_{eq}
S1	1.2680(1)	0.6734(1)	0.2733 (1)	0.043 (1)
S2	0.9181(1)	0.5441(1)	0.3207(1)	0.041 (1)
S3	1.3871(1)	0.4694(1)	0.3790(1)	0.038(1)
S4	0.9908(1)	0.3274(1)	0.4354(1)	0.041(1)
Cl	1.0622 (5)	0.6797 (4)	0.2616 (3)	0.043 (2)
C2	1.2196 (4)	0.5230(4)	0.3386(2)	0.034(1)
C3	1.0600 (4)	0.4650 (4)	0.3604 (2)	0.034(1)
C4	0.8867 (4)	0.1567 (4)	0.3584 (2)	0.035 (1)
C5	0.8700 (5)	0.1600 (4)	0.2641(2)	0.041 (1)
C6	0.7973 (5)	0.0267 (4)	0.2026 (3)	0.044(2)
C7	0.7398 (4)	-0.1116(4)	0.2364(3)	0.041(1)
C8	0.7450 (4)	-0.1236(4)	0.3273 (3)	0.040(1)
C9	0.8178 (4)	0.0123 (4)	0.3873(2)	0.036(1)
C10	1.3539 (4)	0.3219 (4)	0.2919 (2)	0.033 (1)
C11	1.2583 (5)	0.3057 (4)	0.2051(2)	0.041 (2)
C12	1,2275 (5)	0.1844 (4)	0.1384(2)	0.044(2)
C13	1.2960 (5)	0.0823 (4)	0.1605 (2)	0.039(1)
C14	1.3930(5)	0.0932 (4)	0.2449 (2)	0.039(1)
C15	1.4202 (4)	0.2147 (4)	0.3086 (2)	0.033 (1)
NI	0.8181 (4)	-0.0031(4)	0.4839 (2)	0.044 (1)
N2	0.6684 (4)	-0.2525(4)	0.1707 (3)	0.054(1)
N3	1.5241 (4)	0.2237 (4)	0.3968 (2)	0.041 (1)
N4	1.2634 (5)	-0.0471(4)	0.0919 (2)	0.054 (2)
09	1.0252 (4)	0.7661 (3)	0.2191 (2)	0.059(1)
01	0.8801 (4)	0.1129 (3)	0.5381 (2)	0.059(1)
O2	0.7596 (4)	-0.1309(3)	0.5063 (2)	0.070(2)
03	0.6739 (5)	0.2387 (4)	0.0910(2)	0.075 (2)
04	0.6090 (4)	-0.3751(3)	0.2004 (3)	0.076 (2)
O5	1.5351 (4)	0.1077 (3)	0.4184 (2)	0.056(1)
O6	1.5977 (4)	0.3498 (3)	0.4440 (2)	0.054(1)
07	1.3438 (5)	-0.1244 (4)	0.1083 (2)	0.074 (2)
O8	1.1591 (5)	-0.0694 (4)	0.0226 (2)	0.086 (2)
CI'	0.7423 (7)	0.4637 (6)	0.0102 (3)	0.073 (3)
N1'	0.7771 (5)	0.3696 (4)	0.0782 (2)	0.059 (2)
01′	0.9283 (4)	0.3944 (4)	0.1051 (2)	0.074 (2)
02′	0.6552 (5)	0.2721 (5)	0.1025 (3)	0.110 (2)
		, ,	· · ·	

Table 2. Selected geometric parameters (Å, °)

S1C1 S2C3 S4C3 C2C3	1.777 (5) 1.747 (4) 1.770 (4) 1.346 (5)	S4C4 C1'N1' S2C1 S3C10	1.766 (3) 1.492 (7) 1.778 (4) 1.776 (4)
N1'-02'	1.206 (6)	C1—O9	1.201 (6)

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

S4—C4—C9 122.4 (5) 33—C10—C11 122.1 (5) S3—C10—C15 120.6 (2) C1'—N1'—O1' 117.7 (4) C1'—N1'—O2' 118.7 (5) O1'—N1'—O2' 123.7 (5) Data collection: P3 Data Collection Program (Nicolet, 1985). Cell refinement: P3 Data Collection Program. Data reduction, structure solution, structure refinement, molecular graphics and preparation of material for publication: SHELXTL (Sheldrick, 1984).

This work has been supported by a grant for the Key Research Project in Climbing Program from the state Science and Technology Commission of China.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AS1133). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cassoux, P. & Valade, L. (1991). Inorganic Materials, edited by D. W. Bruce & D. O. Hare, pp. 1–57. London: John Wiley.
- Fang, Q., Min-Hua, J., Zheng, Q., Hong, L., Wen-Tao, Y. & Zhuang, Z. (1994). J. Mater. Chem. 4, 1041–1045.
- Fang, Q., Zheng, Q., Yao, Y. & Xiao-Zeng, Y. (1992). Chin. Chem. Lett. pp. 795-796.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Nicolet (1985). P3 Data Collection Program. Version 81.3. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1984). SHELXTL User's Manual. Revision 4.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Williams, J. M., Wang, H. H., Emge, T. J., Geiser, U., Beno, M. A., Leung, P. C. W., Carlson, K. D., Thorn, R. J. & Schultz, A. J. (1987). Prog. Inorg. Chem. 35, 51–218.

Acta Cryst. (1995). C51, 1604–1606

An Epoxyamide

WILLIAM CLEGG,* MASSIMO RANELLI AND RICHARD F. W. JACKSON

Department of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, England

(Received 18 November 1994; accepted 25 January 1995)

Abstract

The title compound, (2S,3R)-3-phenyl-N,N-bis[(R)-1-phenylethyl]oxirane-2-carboxamide, C₂₅H₂₅NO₂, con-

tains an oxirane ring with phenyl and amide substituents. These have no observable influence on the geometry of the ring which has two insignificantly different C—O bond lengths of 1.423(3) and 1.425(3)Å. A survey of previously published oxirane structures indicates that the lack of electronic influence on the ring geometry by carbonyl substituents is common.

Comment

Nucleophilic epoxidation of unsaturated amides can be carried out using lithium *tert*-butyl peroxide (Meth-Cohn, Moore & Taljaard, 1988). In an effort to prepare enantiomerically enriched epoxy amides, an investigation of the nucleophilic epoxidation of the chiral enantiomerically pure crotonamide derivative (1) was carried out.

Epoxidation of (1) gave the diastereoisomeric epoxides (2) and (3) (73% yield) in a ratio of 66:34 as judged by ¹H NMR (200 MHz). Crystallization of the diastereoisomeric mixture by vapour diffusion of petrol (333–353 K boiling range) into an isopropyl acetate solution yielded pure crystals of the major diastereoisomer (2) (confirmed by NMR). Because of the relatively low diastereoselectivity of the epoxidation process, no further synthetic work has been undertaken.

Although the enantiopole refinement (Flack, 1983) indicates a preference for the opposite absolute configuration, this is of marginal significance, with only very weak anomalous scattering effects. The correct configuration was assumed from the known configuration of the amine starting material.

The geometry of the cyclopropane ring shows considerable variation which can be correlated with the electronic properties of the substituents on the ring (Allen, 1980). For the ring atom with the most strongly electronaccepting substituents, the distal ring bond is shortened and the vicinal bonds are lengthened. We were both surprised and disappointed that in a survey of oxirane structures in the Cambridge Structural Database (Allen, Davies, Galloy, Johnson, Kennard, Macrae, Mitchell, Mitchell, Smith & Watson, 1991) there was a much less marked correlation in the case of the ring C—C and C—O bonds of these molecules (Clegg & Kelly, 1994). In particular, for around 150 well determined structures

in which the oxirane is not part of a polycyclic system, there is no clear pattern for the C—O bond lengths, except in the case of a small number of structures containing very strongly electron-withdrawing substituents such as cyano, nitro or sulfonyl, for which the near C—O bond is shortened and the far C—O and C—C bonds are lengthened slightly. The title compound shows no significant difference between the two ring C—O bonds, which is in common with most of the 25 carbonyl-substituted oxirane structures located in the database.

Fig. 1. The structure of the title compound with atom labels and 40% probability ellipsoids.

Experimental

The crotonamide was prepared by treatment of cinnamoyl chloride with (R,R')- α,α' -dimethyldibenzylamine (Eleveld, Hogeveen & Schudde, 1986), in the presence of sodium hydroxide, in a two-phase water/dichloromethane mixture. The epoxidation reaction was carried out at room temperature according to the general literature method of Meth-Cohn, Moore & Taljaard (1988).

Crystal data

C ₂₅ H ₂₅ NO ₂	Cu $K\alpha$ radiation
$M_r = 371.46$	$\lambda = 1.5418 \text{ Å}$
Orthorhombic	Cell parameters from 32
$P2_{1}2_{1}2_{1}$	reflections
a = 9.8537 (10) Å	$\theta = 15.94 - 19.75^{\circ}$
b = 14.2586(13) Å	$\mu = 0.588 \text{ mm}^{-1}$
c = 14.7465 (14) Å	T = 295 (2) K
V = 2071.9 (3) Å ³	Block
Z = 4	$0.68 \times 0.56 \times 0.36$ mm
$D_x = 1.191 \text{ Mg m}^{-3}$	Colourless

Data collection

Stoe Siemens diffractometer	$R_{\rm int} = 0.0374$
ω/θ scans with on-line	$\theta_{\rm max} = 65.08^{\circ}$
profile fitting (Clegg,	$h = -11 \rightarrow 11$
1981)	$k = -16 \rightarrow 16$
Absorption correction:	$l = -15 \rightarrow 17$
none	3 standard reflections
5505 measured reflections	frequency: 60 min
3366 independent reflections	intensity decay: 2%
3150 observed reflections	
$[I > 2\sigma(I)]$	

Refinement		OI-CI-N	123.0 (2)	C17—C12—C10	122.0 (2)
Refinement on F^2 R(F) = 0.0480 $wR(F^2) = 0.1510$ S = 1.040 3365 reflections 256 parameters $w = 1/[\sigma^2(F_o^2) + (0.0891P)^2 + 0.3409P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.169$ e Å ⁻³ $\Delta\rho_{min} = -0.159$ e Å ⁻³	Extinction correction: SHELXL93 (Sheldrick, 1993) Extinction coefficient: 0.0035 (6) Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)	$\begin{array}{c} \text{C1} - \text{C1} - \text{C2} \\ \text{N} - \text{C1} - \text{C2} \\ \text{O2} - \text{C2} - \text{C3} \\ \text{O2} - \text{C2} - \text{C1} \\ \text{C3} - \text{C2} - \text{C1} \\ \text{O2} - \text{C3} - \text{C2} \\ \text{O2} - \text{C3} - \text{C2} \\ \text{O2} - \text{C3} - \text{C4} \\ \text{C2} - \text{C3} - \text{C4} \\ \text{C3} - \text{C4} - \text{C3} \\ \text{C4} - \text{C5} - \text{C4} \\ \text{C5} - \text{C6} - \text{C5} \\ \text{C7} - \text{C6} - \text{C5} \\ \text{C8} - \text{C7} - \text{C6} \\ \text{C7} - \text{C8} - \text{C9} \\ \text{C9} - \text{C4} \\ \text{C9} - \text{C4} \\ \text{C9} - \text{C6} \\ \text{C7} - \text{C8} - \text{C9} \\ \text{C9} - \text{C4} \\ \text{C9} - \text{C4} \\ \text{C9} - \text{C6} \\ \text{C7} - \text{C8} - \text{C9} \\ \text{C9} - \text{C4} \\ \text{C9} - \text{C4} \\ \text{C1} \\ \text{C1} - \text{C2} \\ \text{C2} - \text{C2} \\ \text{C2} - \text{C2} \\ \text{C3} - \text{C6} \\ \text{C7} - \text{C6} \\ \text{C7} - \text{C6} \\ \text{C7} - \text{C6} \\ \text{C7} \\ \text{C9} - \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ $	119.1 (2) 117.9 (2) 59.26 (14) 114.6 (2) 120.9 (2) 59.14 (15) 117.8 (2) 123.9 (2) 118.9 (3) 122.5 (2) 118.6 (2) 118.4 (3) 121.8 (3) 119.9 (4) 121.3 (2)	C12—C13—C14 C15—C14—C13 C16—C15—C14 C15—C16—C17 C16—C17—C12 N—C18—C19 C20—C18—C19 C20—C18—C19 C21—C20—C25 C21—C20—C18 C25—C20—C18 C25—C20—C18 C22—C21—C20 C21—C22—C23 C22—C23—C24 C23—C24—C25 C20—C15—C14	121.3 (3) 120.8 (3) 118.7 (3) 120.8 (3) 110.5 (2) 111.7 (2) 114.5 (2) 119.0 (3) 118.0 (2) 123.0 (2) 122.6 (4) 119.8 (3) 120.5 (3) 119.0 (3)
		N-C10-C11	111.2(2)		

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* d_i$	a_j^*	$\mathbf{a}_i \cdot \mathbf{a}_j$	•
---	---------	-----------------------------------	---

	х	У	Ζ	U_{ea}
01	0.0588 (2)	0.73081 (12)	0.24290 (15)	0.0761 (6)
O2	0.3111 (2)	0.65183 (12)	0.25508 (12)	0.0654 (5)
N	0.1321 (2)	0.87578 (12)	0.28131 (13)	0.0520 (4)
C1	0.1518 (2)	0.7852 (2)	0.2578 (2)	0.0527 (5)
C2	0.2958 (2)	0.7509(2)	0.2492 (2)	0.0537 (5)
C3	0.3387 (2)	0.6964 (2)	0.1706(2)	0.0500 (5)
C4	0.4798 (2)	0.6937 (2)	0.1363 (2)	0.0546 (5)
C5	0.5896 (3)	0.7126(2)	0.1905 (2)	0.0744 (8)
C6	0.7222 (3)	0.7060 (2)	0.1542 (3)	0.0961 (11)
C7	0.7368 (4)	0.6800(2)	0.0641 (3)	0.0981 (12)
C8	0.6305 (4)	0.6613 (3)	0.0120(3)	0.0928 (10)
C9	0.5017 (3)	0.6679 (2)	0.0469(2)	0.0720 (7)
C10	0.2402 (2)	0.9477 (2)	0.2907 (2)	0.0541 (5)
C11	0.3036 (3)	0.9709 (2)	0.1992 (2)	0.0727 (7)
C12	0.3428 (2)	0.92557 (15)	0.3654 (2)	0.0532 (5)
C13	0.3002 (3)	0.8939 (2)	0.4490 (2)	0.0629 (6)
C14	0.3918 (3)	0.8761 (2)	0.5180(2)	0.0760 (8)
C15	0.5280 (3)	0.8885 (2)	0.5047 (2)	0.0818 (9)
C16	0.5716(3)	0.9205 (3)	0.4230(3)	0.0892 (10)
C17	0.4812 (3)	0.9396 (2)	0.3537 (2)	0.0720 (7)
C18	-0.0110 (2)	0.9093 (2)	0.2873 (2)	0.0593 (6)
C19	-0.0443 (3)	0.9798 (3)	0.2122 (2)	0.0896 (10)
C20	-0.0425 (2)	0.9432 (2)	0.3824 (2)	0.0501 (5)
C21	-0.0590 (3)	0.8770 (2)	0.4495 (2)	0.0775 (8)
C22	-0.0886 (3)	0.8999 (4)	0.5355 (3)	0.0999 (13)
C23	-0.1042 (3)	0.9910 (4)	0.5587 (2)	0.1002 (14)
C24	-0.0886 (3)	1.0617 (3)	0.4937 (2)	0.0808 (9)
C25	-0.0584 (2)	1.0366 (2)	0.4038 (2)	0.0563 (5)

Table 2. Selected geometric parameters (Å, °)

	•	-	
01—C1	1.220 (3)	C10-C12	1.527 (3)
02—C2	1.423 (3)	C12—C13	1.378 (4)
O2—C3	1.425 (3)	C12—C17	1.390 (4)
N—C1	1.351 (3)	C13-C14	1.383 (4)
N-C10	1.486 (3)	C14—C15	1.367 (5)
N-C18	1.491 (3)	C15-C16	1.359 (5)
C1-C2	1.507 (3)	C16-C17	1.383 (5)
C2—C3	1.458 (3)	C18—C20	1.516 (3)
C3C4	1.479 (3)	C18C19	1.531 (4)
C4—C5	1.372 (4)	C20-C21	1.377 (3)
C4C9	1.386 (4)	C20—C25	1.377 (3)
C5-C6	1.415 (4)	C21—C22	1.343 (6)
C6—C7	1.387 (6)	C22—C23	1.352 (6)
C7—C8	1.326 (6)	C23—C24	1.400 (6)
C8—C9	1.374 (5)	C24—C25	1.405 (4)
C10-C11	1.524 (4)		
C2C3	61.60 (15)	N-C10-C12	113.5 (2)
C1-N-C10	125.5 (2)	C11—C10—C12	114.4 (2)
C1-N-C18	117.2 (2)	C13—C12—C17	117.2 (2)
C10-N-C18	116.9 (2)	C13-C12-C10	120.8 (2)

Fixed C-H bond lengths and ideal tetrahedral angles were imposed on the methyl groups, which were free to rotate about the C-C bonds during the refinement, contributing one extra parameter per methyl group. Isotropic H atoms were refined with a riding model and $U(H) = 1.2U_{eq}(C)$.

Data collection: DIF4 (Stoe & Cie, 1988). Cell refinement: DIF4. Data reduction: local programs. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93 and local programs.

We thank EPSRC for financial support, Mr David Waldram (Sterling Organics, Fawdon) for supplying the sample of (R, R')- α, α' -dimethyldibenzylamine and for some preliminary experiments, and Professor O. Meth-Cohn (Univ. of Sunderland) for helpful discussions.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1114). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H. (1980). Acta Cryst. B36, 81-96.
- Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Clegg, W. & Kelly, J. (1994). Unpublished results.
- Eleveld, M. B., Hogeveen, H. & Schudde, E. P. (1986). J. Org. Chem. 51, 3635-3642.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Meth-Cohn, O., Moore, C. & Taljaard, H. C. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 2663-2674.
- Sheldrick, G. M. (1990). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988). DIF4. Diffractometer Control Program. Version 7.04. Stoe & Cie, Darmstadt, Germany.